Q2 - Original solutions.

$$
\begin{aligned}
& \frac{A_{O_{2}}}{A_{D_{1}}}=5 \\
& I=I_{s}\left(e^{v / v_{1}}-1\right) \\
& I=A_{q}\left(\frac{D_{p} p_{n}}{L_{p}}+\frac{D_{n} n_{p}}{L_{n}}\right)\left(e^{V / v_{1}}-1\right) \\
& D_{p}=\mu_{p} V_{1}, D_{n}=\mu_{n} V_{1}, P_{n}=\frac{n_{i}^{2}}{N_{0}}, N_{p}=\frac{n_{i}^{2}}{N_{A}} \\
& L_{p}=\sqrt{D_{p} \tau_{p}}, L_{n}=\sqrt{D_{n} \tau_{n}}
\end{aligned}
$$

Hence, if the doping le el and the falrieti- are the sane for both divides, ell the permute abuse are egmitalut

$$
\begin{align*}
& L_{02}=A_{\text {or }} q\left(\frac{D_{p} p_{n}}{L_{p}}+\frac{D_{n} n_{p}}{L_{n}}\right)\left(e^{\nu / L_{1}}-1\right) \\
& I_{01}=A_{01} q\left(\frac{B_{p} p_{n}}{L_{p}}+\frac{b_{n} n_{p}}{L_{n}}\right)\left(e^{V / v_{\tau}}-1\right) \\
& \frac{I_{0_{1}}}{I_{p_{2}}}=\frac{A_{p} q\left(B_{p} p_{n}\right.}{L_{p}}+\frac{\left.D_{n} n_{p}\right)\left(e^{v / A_{q_{2}}}-1\right)}{L_{n}} \frac{A_{p^{2}} q\left(B_{p} p_{n}\right.}{L_{p}}+\frac{\left.D_{n} A_{p}\right)\left(e^{v / /_{T}}-1\right)}{L_{n}} \\
& =\frac{1}{5} \\
& T=300^{\circ} \mathrm{K}, V_{T}=\frac{\mathrm{kT}}{q}=\frac{1.381 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K} \times 300^{\circ} \mathrm{K}}{1.6 \times 10^{-19} \mathrm{C}}=0.0258 \mathrm{~g} / \mathrm{C} \\
& =0.025 \text { 89 Void } \quad=0.0254 \frac{\mathrm{~J}}{\mathrm{As}_{\mathrm{s}}} \\
& I_{D_{1}}=A_{01} q(\underbrace{\frac{D P P_{n}}{L_{p}}+\frac{D_{n} n_{p}}{L_{n}}})\left(e^{\left.v / v_{T}-1\right)} \quad=0.02589 \frac{J-\Omega}{v s}\right. \\
& \begin{array}{l}
0.6 \mathrm{~m}=10^{-15}\left(e^{v / v_{\tau}}-1\right) \quad \text { since } I_{v_{1}}=\frac{1}{5}(3 \mathrm{~m})=0.6 \mathrm{~mA} \\
e^{v / v_{\tau}}=6 \times 10^{11}
\end{array} \\
& V=0.70^{2} 1 \mathrm{VOH} \tag{5}
\end{align*}
$$

(C) The diodes are Silicon based on the 0.7021 V across them when they are forward biased.

Corrected solution to 2(b).
$\mathrm{T}=300^{\circ} \mathrm{K}$
$\mathrm{V}_{\mathrm{T}}=\mathrm{kT} / \mathrm{q}=0.02589 \mathrm{~V}$.
From (a), $I_{D 1} / I_{D 2}=1 / 5$
From the circuit, $\mathrm{I}_{\mathrm{D} 1}+\mathrm{I}_{\mathrm{D} 2}=3 \mathrm{~mA}$
So, $\mathrm{I}_{\mathrm{D} 1}+5 \mathrm{I}_{\mathrm{D} 1}=3 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{D} 1}=0.5 \mathrm{~mA}$
$0.5 \mathrm{~mA}=10^{-15}\left(\mathrm{e}^{\mathrm{V} / \mathrm{V}} \mathrm{T}-1\right)$
$e^{\mathrm{V} / \mathrm{V}}{ }_{\mathrm{T}}=5 \times 10^{11}$
$\mathrm{V} / \mathrm{V}_{\mathrm{T}}=26.9379$
Hence, $\mathrm{V}_{\mathrm{T}}=0.6974 \mathrm{~V}$.

Corrected solution to 2(c).

The diodes are Silicon based on the approximately 0.7 V across them when they are forward biased.

